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Executive Summary 

 

 6G is going to be complex and fast-paced.  Demands for higher throughput are growing 

exponentially.  Our ambitious 6G goals clearly cannot be achieved with humans in the loop.  Only AI can 

make 6G truly successful.  Three wireless applications are outlined below that provide enhanced 

communication performance with AI support: (a) efficiently identifying and correcting message faults 

without a retransmission, (b) adjusting beam parameters in real-time without beam scanning, and (c) 

selecting an optimal modulation scheme based on current message fault rates.  It is difficult to imagine 6G 

without these AI-based solutions. 

 

 The innovations described below are not aimed at standards; they represent business 

opportunities.  Companies implementing these methods will obtain a competitive advantage.  The 

innovations disclosed below will enable wireless companies to provide better services and better 

performance, increased customer satisfaction, growing sales volume, and higher profits for the provider. 

 

Artificial Intelligence Models 

 

 AI excels at complex, non-linear, multi-variable 

problems requiring instant, "good-enough" decisions, in a 

rapidly evolving environment - such as 6G.  Training is 

the hard part, generally requiring millions of examples and 

millions of iterative adjustments.  Once trained, however, 

the AI model provides answers nearly instantaneously.   

 

 Figure 1 shows an AI model configured as a 

neural net.  Input values go through layers of internal 

functions or "nodes", before being accumulated in a final 

answer.  Although links are shown between just a few of 

the nodes, in many models each node is linked to all of the 

nodes in the previous layer, and provides results to all of 

the nodes in the following layer.   

 

 Each node is a little calculator with adjustable 

variables that are carefully adjusted during training.  For 

example, in "supervised" learning, the correct answer is 

already known ("ground truth").  The output is compared 

to the ground truth, and the internal variables are adjusted 

to obtain better agreement.  After training, the model can 

be simplified by deleting unhelpful links and inputs, 

among other steps, resulting in a portable algorithm that 

solves problems fast, at negligible cost. 
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Fig. 1:  Neural net AI model.  Inputs are 

mathematically combined by layers of 

internal functions (nodes), which then 

feed the output.  The ground truth is used 

during training to adjust variables. 
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 Figure 2 shows what's inside each node.  

Input links "X" are shown from the previous layer, 

and output links "Y" are shown going to the next 

layer.  The internal function is actually quite simple:  

it calculates a weighted sum of the X inputs, and 

"squashes" the result between ±1.  The weighting 

variables "W" and offsets "O" are adjustable.  The 

squashing function is a trigonometric or logarithmic 

function.  All the X inputs of a given node are 

different, but all the Y outputs of the node are the 

same.  The final answer is the sum of all the node 

outputs from the last layer. 

 

 Despite the primitive function in each node, 

trained AI models can provide surprisingly good 

answers.  They are superb at finding subtle and 

complex correlations among thousands or millions of input values, which no human could possibly 

comprehend.  The AI model, on the other hand, easily finds and huge, complex correlations.  That's why 

AI often finds solutions that humans would never guess.   

 

 It is apparent from the node structure that the AI model is not "intelligent" in any meaningful 

sense of the word.  AI is just a massively-parallel basic calculator.  Its only strength is to identify hidden 

correlations among a large number of input values, and to do so quickly (after being trained).  Like any 

computer program, the AI model has no "will" or agenda of its own, despite the human-like appearance of 

some AI model outputs.  But it's an illusion - those models were specifically trained to emulate humans.  

AI models only do what the operator trains them to do.  AI can certainly do harm, like any powerful tool.  

But if AI does harm, blame the human operator, not the model. 

 

 

Identifying and Localizing Message Faults 

 

 Message faulting is an unsolved problem, and it is getting worse.  Network crowding, pathloss at 

high frequencies, and the high numerologies and modulation orders desired for 6G all contribute to 

faulting.  The current response to any message fault is to automatically request a retransmission of the 

message or its FEC bits (unless the message is already loaded with the FEC bits, a further burden).  FEC 

bits sometimes work and sometimes not.  Message faulting will be a serious time-waster in 6G, unless a 

better way can be found for correcting message faults. 

 

 In a faulted message, there is still plenty of valid information remaining in the unfaulted symbols.  

Each faulted message element usually exhibits some kind of corruption signature, such as erratic 

modulation, unstable amplitude or phase, unexpected frequency shift or polarization angle, and other 

peculiarities.  Shown below are waveform parameters that often accompany message faults.  The receiver 

can identify the faulted message elements by detecting these signature parameters, and then correct the 

message using AI.  Importantly, the entire fault correction can be implemented entirely within the 

receiver, without asking for a costly and time-consuming (and energy-consuming) retransmission. 

 

 Correlating these parameters to determine the most likely faulted message elements is a 

complicated task, and correcting the message is even more so.  But a trained AI model can easily analyze 

the disparate data, identify the likely faulted message elements according to waveform irregularities, 

discern the likely intent or meaning of the message based on prior unfaulted messages, and then provide 

the most likely corrected version - all in a tiny fraction of the time required for a retransmission. 
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Fig. 2:  A single node of the AI model.  Node 

inputs from the previous layer are combined in a 

weighted sum using variable weights, then 

squashed and linked to the next layer. 
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 Figure 3 is an example of information that an AI model 

can use to diagnose a faulted message.  The figure shows a 

modulation table with 16 states of either 16QAM (I versus Q 

branches) or 4x4 amplitude-phase modulation of the waveform 

signal.  With either modulation scheme, or any other modulation 

scheme, the receiver can readily determine the modulation 

deviation of each message element, relative to the closest proper 

state.  Most faulted message elements have a large modulation 

deviation, whereas correct message elements tend to be quite 

close.  Two faulted message elements are shown in the figure as 

"o".  The modulation deviation is either the absolute "radial" 

distance to the closest calibration state, or the cartesian 

coordinates of the two modulation parameters.  The radial 

distance makes sense in QAM because the two branches are 

logically equivalent.  The cartesian deviation makes sense in 

amplitude-phase modulation because the two axes represent 

different quantities, the waveform amplitude and phase.   

 

 In amplitude-phase modulation, the transmitter 

modulates the waveform according to multiplexed amplitude and 

phase levels.  The receiver still does the signal processing with 

orthogonal I and Q branches as usual, but then it calculates the 

waveform amplitude and phase using formulas.  Demodulation 

is then done using the amplitude and phase values. 

 

 Figure 4 shows another valuable waveform fault 

diagnostic.  Using the digitized data of each symbol-time, the 

receiver determines the variations in the symbol amplitude, a 

clear sign of noise or interference.  Noise-free signals are flat, 

other than the initial run-up.  The amount of amplitude 

variation (within the subcarrier bandwidth) can be measured 

and correlated with faulting.  The phase of a faulted signal is 

also likely variable, and even easier to detect.   

 

  Figure 5 shows a distribution plot of the amplitude (or 

phase) variations, with and without noise, such as the 

noise shown in Figure 4.  The distribution of amplitude 

variations is much wider when noise is present, as 

expected.  The width and offset of the distribution 

depend sensitively on the type of noise, but in every case 

the width is increased relative to a noise-free signal. 

 

 The AI model can take, as further inputs, the 

widths of the amplitude variation distribution and the 

phase variation distribution, and their offsets if any, for 

each message element in the message.  The AI model can 

then identify the likely faulted message elements with 

highest waveform deviations and highest modulation 

deviations.  The AI thus identifies each faulted message 

element in real-time, without a retransmission.   
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Fig. 3:  The modulation deviation is 

the distance between the received 

signal and the closest calibration 

state.  Faulted message elements 

have larger modulation deviations, 

on average. 
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Fig. 5:  Distribution of amplitude 

variations during symbol-time with noise 

as in Fig. 4 (solid line) and without noise 

(dashed). 
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 The digitized waveform data of each message element can also reveal a small frequency deviation 

of each message element waveform, due to noise or interference.  The frequency deviation is relative to 

the predetermined subcarrier frequency, but still within the subcarrier bandwidth.  Message elements with 

a frequency offset are likely faulted.   

 

 Many receivers can measure the polarization angle of the waveform using multiple antennas.  

Since the polarization angle is often affected by noise, any message element with a polarization angle 

different from the neighboring message elements is immediately suspect.  The ratio of the two 

polarization signals is likely to be different in a faulted message element than an unfaulted one.  The 

polarization ratio (or equivalently, the angle between the polarization components) of each message 

element is then another valuable diagnostic input to the AI model. 

 

 Figure 6 shows an analysis of fault-correlation deviations.  Some 

parameter of the signal waveform, such as amplitude or phase or polarization, is 

compared to the other message elements instead of the "nominal" or calibrated 

level.  Any message element that deviates substantially from the other message 

elements is considered an outlier, and therefore suspicious. 

 

 In the figure, the measured values of the waveform parameter are shown 

as dots for each message element.  The distribution is shown as a peak.  The width 

of the distribution shows the usual variation.  The calibrated or "nominal" value of 

the parameter is also shown, as a line.  The average often deviates slightly from 

the nominal value, but this is not a fault if they are all about the same.  The 

"outlier", on the other hand, differs substantially from the average, indicating a 

likely fault.  In the figure, the outlier is so close to the nominal value, that any 

regular test based on the nominal value would miss it.  But in comparison to the 

average of the other message elements, the outlier is clearly different, and hence 

suspicious.  To catch these outlier cases, the AI model can take, as further input, 

each message element's deviation from the average, for multiple parameters. 

 

 There are many other waveform parameters, indicative of faulting, that 

the receiver can determine from the waveform data.  It doesn't matter whether the data is still in the form 

of I and Q branch amplitudes, or has been converted to the waveform amplitude and phase values.  In 

either case, the AI model can recognize the fault indicators of each message element, and calculates an 

overall "suspiciousness" metric that identifies the likely faulted message elements.  Then the AI model, or 

another AI model, can correct the message, using the procedures described below. 

 

 

Correcting the Faulted Message 

 

 Identifying the likely faulted message elements is just a start.  The AI model that identifies the 

faulted message elements, or a separate AI model, can be trained to correct faulted message elements 

based on various factors.  For example, the AI model can use the information contained in the unfaulted 

message elements to determine the most likely correct version, or a number of candidate versions along 

with the likelihood of each one.  All the candidate versions can be tested against the error-detection code 

associated withe the message (unless the error-detection code itself is faulted), among other tests 

described below.  The AI model generally requires many inputs to discern the correct version of the 

message, but these are available in the digitized signal data.  Figure 7 shows some of the parameters that 

the AI can use. 
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 The AI model can be trained to favor bit sequences or symbol 

sequences from previous unfaulted messages commonly received by 

the particular application at hand, and can strongly disfavor any 

sequences that are rarely or never seen in the prior messages.  

However, if one of the disfavored sequences is then received in an 

unfaulted message, that sequence can be added to the whitelist.  In 

addition, sequences commonly seen in the faulted messages can be 

maintained in a blacklist, for further fault identification.  

 

 The AI program can also recognize violations in rules, such as 

deviations from the accepted form of the message or its format.  In 

addition, the AI can provide multiple candidate solutions, along with 

the likelihood of each version.  For example, the AI can elevate 

candidates that alter only the likely-faulted message elements, and can 

downgrade candidates that alter non-suspicious message elements. 

 

 For even greater value, the AI program can be trained to 

figure out the meaning or intent of the message, based on the 

unfaulted message elements, just a human expert would do.  For 

example, the AI model can infer meaning according to prior unfaulted 

messages similar to the faulted one.  The AI can also correlate the 

meaning or intent of the faulted message with current operating 

factors of the receiving entity, such as whether it receives an 

acknowledgement after a transmission, among many other, 

increasingly subtle, correlations. 

 

 In a similar way, the AI model can select the candidate 

version that seems to "make sense" in the application, discarding or at 

least downgrading versions that seem inappropriate in the application.  

These judgements can again be based on prior unfaulted messages, as 

well as multi-parameter correlations that only AI can discern from the 

training examples. 

  

 For further accuracy, the AI program can combine all the 

diagnostic results into an overall "suspiciousness" metric.  This 

includes the number of message elements in the candidate that differ 

from the received message, and whether those altered message 

elements were likely faulted.  It can also include factors such as 

whether each candidate obeys all form and format constraints, and 

whether the version corresponds closely to prior unfaulted messages, 

or includes rare or forbidden sequences, and whether the candidate 

version makes sense in the application, and whether it agrees with the 

error-detection code.  The AI can then pick the candidate version with 

the lowest overall suspiciousness, as the corrected message. 

 

 In a worst-case situation, the AI model can determine that 

there are too many faults to recover the message, or that the best 

candidate version still has high suspiciousness.  In such cases, the AI 

model can recommend a retransmission of the whole message, or just 

a portion depending on the distribution of faults.  

BACKGROUND NOISE 

  Noise level during message. 

  Interference level. 

  Time structure of noise.  

  Frequency structure. 

  Signal in blank elements. 

DEMOD REFERENCE 

  Proximity to message. 

  Both front and back? 

  Mod quality of reference. 

MESSAGE 

  Modulation deviations. 

  SNR each element. 

  Error-detection code. 

    Is EDC faulted? 

Likely fault locations. 

RETRANSMISSION 

  Also corrupted? 

  Which elements differ? 

    And how do they differ? 

  Modulation deviations. 

  SNR each element. 

 

EXPECTED 

  Expected format, values. 

  Past messages and faults. 

  Past sequences. 

  Rules and limits. 

Corrected message. 

WAVEFORM 

  Amplitude fluctuations. 

  Phase fluctuations. 

  Received power level. 

  Inter-symbol transitions. 

  Polarization outliers. 

  Frequency offset. 

   

AI INPUTS: 
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 If a retransmission is requested, and if it agrees with its error-detection code, and has the correct 

format, then the correct message is in hand, and that task is done.  Then the AI, or another program, can 

diagnose the fault types in the corrupted message by comparing the modulations in the two copies.  If, 

however, the second copy is also faulted, then the AI program, or another algorithm, can construct a 

merged version by selecting the message elements from each copy with the best signal quality and 

modulation deviation.  The merged version usually has no faults, in which case the task is done.  If the 

merged copy still has faulted message elements, the AI model can look for correlations in meaning 

between the first and second copy.  Since the two copies have the same meaning but different faults, the 

AI can readily determine the corrected message, or at least a smaller set of candidate messages with 

greatly improved suspiciousness metrics. 

 

 A major advantage of AI-based fault recovery is that the AI model can determine the most likely 

corrected version almost instantaneously, in a single pass through the neural net.  Even for a complex 

inductive solution, based on meaning or intent for example, the correct version can generally be found in 

a tiny fraction of the time required for a retransmission.  In most fault situations, the AI program can thus 

recover the correct message in a way that is completely transparent to the user.  The AI has avoided the 

latency and dropped calls that users hate, and by recovering faulted messages, the AI has enabled the 

user's device to perform at the high level expected, even when the signal quality is poor.  Ideally, the user 

is not aware that the message was initially faulted, and then rescued.  On the other hand, a competitor's 

device, which lacks the powerful AI capability, would require two or three retransmissions to finally get 

the message right, at the expense of latency and energy consumption - assuming the link is not broken in 

the process.  We have learned, from previous generations of wireless technology, that poor reception 

leads to customer dissatisfaction in a big way.  The equipment with best message recovery always wins. 

 

 

Selecting a Better Modulation Scheme 

 

 Another important application of AI is to assist a base station 

in selecting a different modulation scheme when the fault rate gets too 

high.  To select a better modulation scheme, the AI model can analyze 

fault types currently observed, and select a different modulation 

scheme with larger noise margins.  The network can diagnose fault 

types by comparing the waveform amplitude and waveform phase of 

faulted and unfaulted messages.  (Fault diagnosis is not feasible in 

QAM because noise scrambles the branches together, obscuring the 

cause.)  Figure 8 shows the main fault types as: amplitude faults (A-

fault) which occurs when the amplitude is shifted by one amplitude 

level, phase faults (P-fault) when the phase is changed by one level, 

and non-adjacent faults (N-fault) when the amplitude or phase, or 

both, are off by more than one level.  The base station or the user 

device can perform the fault type analysis, based on the uplink or  

downlink faulted messages that they have received. 

  

  After counting the rate of each fault type, the network can select a different modulation scheme 

to mitigate the fault types observed.  The selection of a particular modulation scheme in a busy network 

environment is a complex process due to the huge number of possible modulation choices (see below) and 

the many competing interests such as high throughput, fault minimization, low latency, retransmission 

avoidance.  A trained AI model can perform this task instantaneously and prevent further faulting. 
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Fig. 8: Fault types: Waveform 
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adjacent faults shown. 
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 Many modulation schemes are available to networks, each 

with different margins, costs, and capabilities.  The most beneficial 

modulation schemes at high frequencies are based on amplitude-

phase modulation, because amplitude-phase modulation provides 

larger noise phase margins than QAM.  For example, figure 9 

shows an "asymmetric" modulation scheme, in which the number 

of amplitude levels is different from the number of phase levels.  

Here Namp=8 and Nphase=2, thereby providing 16 states.  This is 

the same number as 16QAM, but now every state has a full 180-

degree phase margin (measured between centers).  Unlike QAM, 

this modulation scheme would eliminate phase faults at high 

frequencies.  A brief demodulation reference may be placed at the 

start and/or end of each message, if necessary to discriminate the 

eight amplitude levels.  When phase faulting becomes problematic 

with 16QAM, as it will, the network can switch to the depicted 

modulation scheme and the phase faults will vanish.  At low 

frequencies, on the other hand, when amplitude faulting is more 

prevalent than phase faulting, the network can use a modulation 

scheme that has more phase levels and fewer amplitude levels.  

Asymmetric demodulation is not feasible in QAM because the I 

and Q branches are logically equivalent.  

 

 Figure 10 shows another beneficial modulation scheme.  

Here the number of amplitude levels is 6 and the number of phase 

levels is 3, neither of which is a power of 2.  The scheme 

provides18 states, each with 120 degrees of phase margin.  The 

scheme virtually eliminates phase faults, while providing higher 

throughput than 16QAM, due to the two extra states.  Also shown 

are "acceptance regions" around each modulation state, such that 

any modulated element falling within one of the acceptance 

regions is automatically demodulated according to the associated 

modulation state.  Also shown are "exclusion zones" such that any 

element with modulation in one of the exclusion zones is 

automatically flagged as faulted.  The acceptance regions can be 

tailored to the current noise environment.  In this case, tighter 

limits are imposed on on amplitude than on phase, as seen by the 

oval shape. 

 

 Figure 11 shows another amplitude-phase modulation 

scheme with 16 states, but now the amplitude levels are not spaced 

uniformly.  A larger spacing is provided at the low-amplitude 

scale, and smaller spacing at the high-amplitude end.  This is to 

compensate for the relatively low SNR at low amplitudes.  The 

phase separation is 90 degrees for every state, unlike QAM.  

 

 The network must consider many factors before deciding 

whether and how to switch modulation schemes.  The network 

must also consider the modulation order, the numerology, and 

other conventions such as repetitions, and other variables that 

further broaden the range of available modulation choices.  The 

network must also consider the QoS and QoE of each user device, 
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which may be parsed further to prioritize low latency versus high throughput, and overall reliability 

versus a tolerance for some faulting (which the receiver may be able to correct, as mentioned).  Further 

considerations include whether the faulting occurs in certain frequency bands, or at certain time intervals, 

in which case the network can switch to a different frequency and/or transmission schedule to avoid the 

observed time/frequency noise bursts.  Some users with strict latency requirements cannot use 

retransmissions at all, because they arrive too late; only the original messages arrive on time.  Some users 

are more flexible regarding latency but depend on the message finally being corrected.  In crowded 

networks, priority can be placed on minimizing unnecessary transmissions and minimizing transmission 

power to avoid background generation, but not so low that signal quality suffers since that would result in 

more faulting and more transmissions and more crowding.  Battery-constrained devices may prefer 

avoiding retransmissions in their uplink messages, and in fact may wish to apply even higher uplink 

transmission power just to avoid frequent retransmission requests by the base station.  Different 

modulation schemes can be provided for uplink and downlink, and different combinations for each user 

device.  Almost every one of these parameters is a compromise between multiple competing interests, all 

of which change dynamically as the background fluctuates and the current demand changes.  Human 

operators cannot possibly assess each episodic problem, decide on a mitigation such as a modulation 

change, and implement it before the next conflict emerges.  Therefore, in every fast-cadence 6G base 

station, AI is needed for network management. 

 

 Complex nonlinear problems such as this, with multiple competing interests, each with different 

priorities, are ideal for AI.  In fact, a well-trained AI model may come close to optimizing the overall 

performance, as viewed by the users and also by the network operators.  For example, the network can 

provide each user's priorities, its current fault spectrum, and its computational capabilities, as inputs to the 

AI model.  The model then indicates which modulation scheme is best suited to each user device, for 

uplink and for downlink.  The AI program can also include, in the calculation, the non-negligible cost of 

switching modulation schemes, such as the added communication costs required to inform the affected 

user devices.   

 

 After the AI has demonstrated high competence at selecting modulation schemes to optimize each 

user's communication experience, the network may decide to turn over responsibility for modulation 

control directly to the AI model.  The AI then autonomously handles the entire process, including 

selection of the modulation scheme, transmitting the necessary change alerts, and monitoring the results.  

Thus the network parameters, such as modulation for each user device, can be controlled automatically, in 

real-time, without human intervention.  This improvement would result in smoother network operations, 

lower network costs, and improved customer experience overall. 

 
 

Adjusting Beam Parameters 

 

 Another important application of AI is adjusting downlink beam parameters, such as direction, 

width, frequency, power, and polarization, for optimal reception by each user device.  The transmission 

beam properties are influenced by numerous competing interests, such as high reception reliability, 

minimal energy consumption, minimal background generation, and low latency.  These priorities are 

generally different for each user device, and different still for uplink.  The best compromise usually 

depends on many environmental factors such as the noise and interference experienced by each user 

device, including the frequency and time distribution of the interfering signals, the distance of the receiver 

from the transmitter, and the density of user devices in the beam direction (regarding background 

sensitivity).  The best compromise also depends on the priorities of the receiving entity, including the 

QoS and QoE of the entity, but with greater granularity in terms of latency, reliability, signal quality, 

message size, computational demands, whether the transmitting or receiving entity goes off-line 
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periodically to save energy, whether the receiving entity is an emergency user or other escalated-priority 

user, and in some cases whether the user has purchased enhanced priority. 

 

 AI is perfect for situations like this.  There are too many factors, and too many competing 

relationships among them, for any human to fathom, and conditions change far too quickly for any human 

to react in real-time.  A well-trained AI model, on the other hand, can slice through the complexity and 

indicate the best transmission beam parameters, in mere microseconds.  For example, the base station can 

include an AI model that takes as input the current and anticipated downlink message load, the QoS and 

other preferences of the user recipients of those messages, and the current background/interference 

conditions reported by various user devices.  The AI can thereby provide beam parameter settings 

customized for each user's needs, and optimized overall.   

 

 Ultimately, the AI model may be able to select and implement these beam control changes 

autonomously.  Preferably such autonomous operation may be permitted only after the AI program has 

demonstrated good performance and stable operation for extended intervals, without human intervention.  

Using AI to "close the loop" in this way enables near-instantaneous reaction to changing conditions, on a 

time scale that would be impossible if humans are in the loop, due to the time required for the human 

brain to comprehend the changing conditions and make some kind of adaptation, but also because the 

inter-related priorities are just too complicated. 

 

 The reception beam parameters of the base station can also be controlled by AI, using a different 

set of inputs but basically the same model.  Since the base station must receive messages from multiple 

sources simultaneously in each OFDM symbol, the AI can optimize the phase and gain properties of each 

antenna in real-time according to the angles of the various transmitting users at each time. 

 

 

Conclusions 

 

 AI is transforming technology, and especially wireless technology.  In this whitepaper, a few 

prominent applications of AI are outlined, leading to improved beam control for optimal reception, 

improved modulation schemes to mitigate faults, autonomously correcting message errors by the receiver 

without a retransmission, and determining the meaning or intent of the message despite corruption. 

 

 Wireless developers and producers should recognize AI as a business opportunity to gain 

competitive advantage, as opposed to setting standards.  For example, a company installing AI-based fault 

correction in their receivers can offer their customers enhanced message reliability and fewer dropped 

calls, without the latency and energy costs of a retransmission.  A company that produces base station 

electronics with AI-based modulation selection and autonomous beam optimization can provide 

substantially improved communications to the users at reduced energy costs.  In these cases and many 

others, AI directly provides improvements in performance, which leads to improved customer 

satisfaction.  Since customer satisfaction drives market share, companies planning the transition to AI-

centric operations have a unique opportunity to lead.  AI is the key that opens all these doors. 

 

 

  



UltraLogic6G.LLC 

Page | 10  www.UltraLogic6G.com 

Glossary 

 

"Base station", as used herein, includes all network assets communicating with users, including access 

points, access relay stations, roadside monitors, satellite relays, and the like.  The term also includes the 

core network, backhaul, and other internal systems of the network assets, unless otherwise called out. 

 

"User device", as used herein, refers to the radio portion of user equipment, specifically the transmitter, 

receiver, antenna, signal processing electronics, and demodulation processor.  The term also includes AI 

models for fault mitigation and message interpretation and the like, when present. 

 

3GPP (Third Generation Partnership Program) is the primary organization for wireless technical 

specifications, and with seven "Partner" organizations, promulgates universal wireless standards. 

 

OFDM (Orthogonal Frequency-Division Multiplexing) means transmitting message data in multiple 

frequencies (subcarriers) at the same time.  The receiver then measures the subcarrier signals to separate 

and demodulate the message elements. 

 

IoT (Internet of Things) devices are low-cost, reduced-capability wireless sensors and actuators. 

 

SNR (Signal-to-Noise Ratio), as used herein, includes interference, stochastic noise, clock drift, and all 

other effects causing message faults, unless specifically indicated. 

 

FR1 and FR2 are frequency ranges.  FR1 is 7.125 GHz and below (and up to 8.4 GHz in 6G).  FR2 is 

24.25 GHz and up.  FR2 is often called mmWave, although a wavelength of 1 mm actually corresponds to 

a frequency of 300 GHz. 

 

BPSK (binary phase-shift keying) is phase modulation at constant amplitude with 2 states separated by 

180 degrees, carrying 1 bit per symbol. 

 

QPSK (quadrature phase-shift keying) is phase modulation at constant amplitude with 4 states separated 

by 90 degrees, carrying 2 bits per symbol 

 

QAM (Quadrature Amplitude Modulation) is a modulation scheme in which the message data is encoded 

in the amplitudes of two orthogonal signal components, termed I and Q branches. 

 

A resource grid is an array of resource elements, arranged by symbol-times in time and subcarriers in 

frequency. 

 

A message element is a single modulated resource element of a wireless message. 

 

A "symbol-time" is the time duration of a single message element. 

 

A message is "time-spanning" if the message elements are sequential in time on the same subcarrier, and 

"frequency-spanning" if the message elements are sequential in frequency at the same symbol-time. 

 

PDSCH and PDCCH represent the downlink shared and control channels by which the base station 

communicates with each user device. 
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US Patent   Title 

 

11,206,092 Artificial Intelligence for Predicting 5G Network Performance 

11,424,787 AI-Based Power Allocation for Efficient 5G/6G Communications 

11,533,084 Automatic Adjustment of Transmission Power for 5G/6G Messaging 

11,405,131 AI-Based Error Detection and Correction in 5G/6G Messaging 

11,411,795 Artificial-Intelligence Error Mitigation in 5G/6G Messaging 

11,522,638 Artificial Intelligence Fault Localization in 5G and 6G Messages 

11,522,745 Identification and Mitigation of Message Faults in 5G and 6G Communications 

11,784,764 Artificial Intelligence for Fault Localization and Mitigation in 5G/6G 

11,799,585 Error Correction in 5G and 6G using AI-Based Analog-Digital Correlations 

11,812,421 AI-Managed Channel Quality Feedback in 5G/6G 

11,848,774 AI-Based Analog-Digital Fault Detection and Localization in 5G/6G 

11,848,788 AI-Based Waveform Analysis for Fault Localization in 5G and 6G 

12,021,614 5G/6G Network Operations with AI-Based Message Fault Correction 

12,057,936 Fault Correction Based on Meaning or Intent of 5G/6G Messages 

 

2023/0100826  Throughput Enhancement by Location-Based Power Adjustment in 5G and 6G 

2023/0103924 Method to Locate Faulted Message Elements Using AI in 5G and 6G 

2023/0110599 AI Means for Mitigating Faulted Message Elements in 5G/6G 

2023/0231685  AI-Assisted Selection of Demodulation Reference Type in 5G and 6G 

2023/0300017 AI-Based Correction of Corrupted 5G/6G Messages 

2023/0362720 Artificial Intelligence for Optimizing 5G/6G Wireless Network Performance  

2024/0032011 Direct AI Management of 5G/6G Network Operations 

2024/0063942  AI Model with Error-Detection Code for Fault Correction in 5G/6G  

2024/0090143 Fault Determination by AI Waveform Analysis in 5G and 6G 

 

 


